Abstract
Design of steep slopes and retaining walls, reinforced with geotextile or geogrids, requires internal stability checks usually referred to a critical failure surface, which determines the amount of reinforcement required. In determining the length of the reinforcement layers the position of the critical surface and also of the sub-critical surfaces must be considered. In relation to these, are verified the anchorage lengths required to ensure the pullout resistance of the reinforcements. This paper presents a study based on limit equilibrium analysis, with bi-linear failure surface, to determine the amount and length of the reinforcement layers required. The model allows replacing Jewell charts by algebraic equations and iterative calculation processes. The results obtained for the minimum length of reinforcements agree with good accuracy for effective friction angles greater than or equal to 30° and indicate that shorter lengths can be used for materials with lower effective friction angle. Expressions for the calculation of the anchorage length are also presented for the three possible cases: anchorage in a section under the projection, part under the projection and beyond the horizontal projection of the slope face.
Subject
Applied Mathematics,General Engineering