Differences in surface roughness of nanohybrid composites immersed in varying concentrations of citric acid

Author:

Alifen Gabriela Kevina,Soetojo Adioro,Saraswati Widya

Abstract

Background: The surface roughness of restoration is important in predicting the length of time it might remain in the mouth. Conditions within the oral cavity can affect the surface roughness of a restoration. Nanohybrid composite is widely used in dentistry because it can be applied to restore anterior and posterior teeth. Athletes routinely consume isotonic drinks which are acidic and even more erosive than the carbonated variety because they contain a range of acids; the highest content of which being citric acid. Purpose: The aim of the study was to analyze the surface roughness of nanohybrid composite after having been subjected to immersion in varying concentrations of citric acid. Methods: Two isotonic drinks (Pocari Sweat and Mizone) were analyzed using high performance liquid chromatography (HPLC) to quantify the respective concentrations of citric acid which they contained. A total of 27 samples of cylindrical nanohybrid composite were prepared before being divided into three groups. In Group 1, samples were immersed in citric acid solution derived from Pocari Sweat. Those of Group 2 were immersed in citric acid solution derived from Mizone; while Group 3, samples were immersed in distilled water as a control. All samples were immersed for 7 days, before their surface roughness was tested by means of a surface roughness tester (Mitutoyo SJ-201). Data was analyzed using a one-way ANOVA test. Results: The results showed that there was no significant difference in surface roughness between Groups 1, 2 and 3 (p=0.985). Conclusion: No difference in surface roughness of nanohybrid composites results from prolonged immersion in varying concentrations of citric acid.

Publisher

Universitas Airlangga

Subject

General Medicine

Reference26 articles.

1. Sakaguchi R, Powers J. Craig's restorative dental materials. 13th ed. Saint Louis: Elsevier; 2012. p. 161-75.

2. Jain A, Deepti D, Tavane PN, Singh A, Gupta P, Gupta A, Sonkusre S. Evaluation of microleakage of recent nano-hybrid composites in class V restorations : An in vitro study. Int J Adv Heal Sci. 2015; 2(1): 8-12.

3. Surface roughness and erosion of nanohybrid and nanofilled resin composites after immersion in red and white wine;Tantanuch;J Conserv Dent,2016

4. Rajavardhan K, Sankar A, Kumar M, Kumar K, Pranitha K, Kishore K. Erosive potential of cola and orange fruit juice on tooth colored restorative materials. Ann Med Health Sci Res. 2014; 4(Suppl 3): S208-12.

5. Exercise and fluid replacement;Sawka;Med Sci Sports Exerc,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3