Analisis Kemampuan Informasi Laba dan Arus Kas dalam Memprediksi Arus Kas Masa Depan

Author:

Pangestu Miranti

Abstract

The purpose of this study is to examine whether earnings information or cash flow information can predict future cash flows in service companies in Indonesia. The sample determined in this study, using the purposive sampling method, produced 145 companies listed on the Indonesian Stock Exchange in 2015-2017, with a total of 435 observations. In this study, multiple regression analysis techniques are used. The results shown by the t-test are partially significant net income. In this case, net income is a predictor of future cash flows. Whereas cash flow information namely operating cash flow, investing cash flow, and funding cash flow do not affect the future cash flow

Publisher

Universitas Airlangga

Reference40 articles.

1. Comparative Predictive Abilities of Earnings and Operating Cash Flows on Future Cash Flows: Empirical Evidence from Ghana;Agana;Accounting and Finance Research,2015

2. The Effect of Earnings Quality on The Predictbaility of Accruals and Cash Flow Models in Forecasting Future Cash Flow;Al-Attar;The Journal of Developing Areas,2017

3. Bagheri, Seyedeh Maryam Babanejad, Abbasali Pouraghajan, Milad Emmgholipour, Elham Mansourinia, dan Fatemeh Adrang. 2012. The Evaluation of Accounting Earnings Component Ability in Predicting Future Operating Cash Flows: Evidence from Tehran Stock Exchange. Journal of Basic and Applied Scientific Research. 2 (12): 12379-12388.

4. Bandi dan Rahmawati. 2005. Relevansi Kandungan Informasi Komponen Arus Kas dan Laba dalam Memprediksi Arus Kas Masa Depan. Jurnal Akuntansi & Bisnis. 5 (1): 27-42.

5. Bareksa.com. 2016. Arus Kas Operasi Negatif Jadi Alasan BNBR Terbitkan Obligasi Konversi. www.bareksa.com. diakses pada hari Sabtu 2 Mei 2020 pukul 11.00 WIB.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3