Thesis Supervisor Recommendation with Representative Content and Information Retrieval

Author:

Wijanto Maresha CarolineORCID,Rachmadiany Rachmi,Karnalim OscarORCID

Abstract

Background: In higher education in Indonesia, students are often required to complete a thesis under the supervision of one or more lecturers. Allocating a supervisor is not an easy task as the thesis topic should match a prospective supervisor’s field of expertise.Objective: This study aims to develop a thesis supervisor recommender system with representative content and information retrieval. The system accepts a student thesis proposal and replies with a list of potential supervisors in a descending order based on the relevancy between the prospective supervisor’s academic publications and the proposal.Methods: Unique to this, supervisor profiles are taken from previous academic publications. For scalability, the current research uses the information retrieval concept with a cosine similarity and a vector space model.Results: According to the accuracy and mean average precision (MAP), grouping supervisor candidates based on their broad expertise is effective in matching a potential supervisor with a student. Lowercasing is effective in improving the accuracy. Considering only top ten most frequent words for each lecturer’s profile is useful for the MAP.Conclusion:An arguably effective thesis supervisor recommender system with representative content and information retrieval is proposed. 

Publisher

Universitas Airlangga

Reference22 articles.

1. Bidang Pendayagunaan & Pelayanan PDSPK, "Perkembangan Pendidikan Tinggi Tahun 1999/2000-2013/2014," Pusat Data dan Statistik Pendidikan dan Kebudayaan (PDSPK), Kementerian Pendidikan dan Kebudayaan (Kemdikbud), Jakarta, 2015.

2. PDDIKTI Kemristekdikti, Higher Education Statistical Year Book 2014/2015, Jakarta: PDDIKTI Kemristekdikti, 2016.

3. D. P. Kusumaningrum, N. A. Setiyanto, E. Y. Hidayat and K. Hastuti, "Recommendation System for Major University Determination Based on Student's Profile and Interest," Journal of Applied Intelligent System, vol. 2, no. 1, pp. 21-28, April 2017.

4. Y. Gao, K. Ilves and D. Głowacka, "OfficeHours: A System for Student Supervisor Matching through Reinforcement Learning," in 20th Intelligent User Interfaces Companion, Atlanta, 2015.

5. M. H. Ismail, T. R. Razak, M. A. Hashim and A. F. Ibrahim, "A Simple Recommender Engine for Matching Final-Year Project Student with Supervisor," in Colloquium in Computer & Mathematical Sciences Education, Arau, 2015.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Graduation Project Allocation Based on Student-Teacher Profile Compatibility;2022 International Conference on Advanced Learning Technologies (ICALT);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3