Relevance Feedback using Genetic Algorithm on Information Retrieval for Indonesian Language Documents

Author:

Azmi Salman Dziyaul,Kusumaningrum Retno

Abstract

Background: The Rapid growth of technological developments in Indonesia had resulted in a growing amount of information. Therefore, a new information retrieval environment is necessary for finding documents that are in accordance with the user’s information needs.Objective: The purpose of this study is to uncover the differences between using Relevance Feedback (RF) with genetic algorithm and standard information retrieval systems without relevance feedback for the Indonesian language documents.Methods: The standard Information Retrieval (IR) System uses Sastrawi stemmer and Vector Space Model, while Genetic Algorithm-based (GA-based) relevance feedback uses Roulette-wheel selection and crossover recombination. The evaluation metrics are Mean Average Precision (MAP) and average recall based on user judgments.Results: By using two Indonesian language document datasets, namely abstract thesis and news dataset, the results show 15.2% and 28.6% increase in the corresponding MAP values for both datasets as opposed to the standard Information Retrieval System. A respective 7.1% and 10.5% improvement on the recall value at 10th position was also observed for both datasets. The best obtained genetic algorithm parameters for abstract thesis datasets were a population size of 20 with 0.7 crossover probability and 0.2 mutation probability, while for news dataset, the best obtained genetic algorithm parameters were a population size of 10 with 0.5 crossover probability and 0.2 mutation probability.Conclusion: Genetic Algorithm-based relevance feedback increases both values of MAP and average recall at 10th position of retrieved document. Generally, the best genetic algorithm parameters are as follows, mutation probability is 0.2, whereas the size of population size and crossover probability depends on the size of dataset and length of the query.Keywords: Genetic Algorithm, Information Retrieval, Indonesian language document, Mean Average Precision, Relevance Feedback 

Publisher

Universitas Airlangga

Reference24 articles.

1. Setiawan, W., 2017. Era Digital dan Tantangannya. Universitas Pendidikan Indonesia.

2. Lee, D. L., Chuang, H. & Kent, S., 1997. Document Ranking and the Vector Space Model. IEEE Software, 14(2), pp. 67-75.

3. Agbele, K., Adesina, A., Ekong, D. & Ayangbekun, O., 2012. State-of-the-Art Review on Relevance of Genetic Algorithm to Internet Web Search. Applied Computational Intelligence and Soft Computing, Volume 2012.

4. Pamungkas, Z. Y., Indrianti & Ridok, A., 2015. Query Ekspansion pada Sistem Temu Kembali Informasi Dokumen Berbahasa Indonesia menggunakan Pseudo Relevance Feedback (Studi kasus: Perpustakaan Universitas Brawijaya). Jurnal Mahasiswa PTIIK UB, 6(3)

5. Agusetyawan, A. W., Ridha Ahmad & Adisantoso, J., 2006. Relevance Feedback pada Temu Kembali Teks Berbahasa Indonesia dengan Metode Ide-Dec-Hi dan Ide-Regular. Jurnal Ilmiah Ilmu Komputer, 4(2).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3