Affiliation:
1. Department of Primary Education, University of Ioannina, Ioannina, GREECE
Abstract
STEM education should begin in kindergarten, as pre-school children’s engagement with science and other fields, such as technology, raises their awareness and interest in science (Mantzicopoulos et al., 2009). In addition, it provides kindergarten children with the necessary opportunities to cultivate their talents (Chesloff, 2013) and contributes to their later development (Kermani& Aldemir, 2015). Pre-school children are capable and ready to learn with a STEM approach, as they can ask investigative questions, justify their opinions, and formulate interpretations about how the world around them works (NSF, 2012). Given the importance of the universal introduction of STEM in pre-school education, this work aims to design a teaching intervention in kindergarten using STEM on the topic of magnetism. First, reference is made to the use of STEM in kindergarten and the usual learning theories on which it is based. Then, the basic methods of its application are briefly presented. Furthermore, the theoretical framework regarding children’s misconceptions about magnetism is presented. Subsequently, the research questions are formulated on which the design of the educational intervention will be based, as well as the research hypotheses arising from the bibliographic review. Then, the goals of the teaching intervention are developed in harmony with the goals of the Greek curriculum for kindergarten, and the choice of methods, means, actions, and applications is justified. Finally, interdisciplinary activities using STEM and the involvement of new technologies are proposed.
Reference55 articles.
1. Akturk, A. A. (2019). Development of a STEM based engineering design curriculum for parental involvement in early childhood education [Doctoral thesis, Middle East Technical University].
2. Alan, U. (2020). Investigation of the effectiveness of STEM education program for preschoolers [Master’s thesis, Hacettepe University].
3. Bagno, E., & Eylon, B.-S. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. Amrican Journal of Physics, 65(8), 726-736. https://doi.org/10.1119/1.18642
4. Bailey, J., Francis, R. G., & Hill, D. M. (1987). Exploring ideas about magnets. Research in Science Education, 17, 113-116. https://doi.org/10.1007/BF02357178
5. Bar, V., & Zinn, B. (1998). Similar frameworks of action-at-a-distance: Early scientists’ and pupils’ ideas. Science and Education, 7, 471-498. https://doi.org/10.1023/A:1008687204309
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献