Solving word problems involving triangles by transitional engineering students: Learning outcomes and implications

Author:

Guo William1ORCID

Affiliation:

1. School of Engineering and Technology, Central Queensland University, North Rockhampton, QLD, AUSTRALIA

Abstract

Transitional engineering students are those who are academically ineligible to enter a bachelor’s engineering program but are enrolled in an associate engineering program with a university. Successful completion of such an associate engineering program allows the higher achievers to transfer to a full bachelor’s engineering program. The associate engineering program is taken commonly by self-employed tradesmen, technical workers, and young apprentices in regional, rural, and remote (RRR) areas. The foundation engineering mathematics course in the associate engineering program, particularly knowledge and skills in solving word problems involving triangles, plays a key role for the smooth transition of these students to the engineering disciplinary courses. However, there is little we have known about the performances of the transitional engineering students in solving problems involving triangles as the associate engineering programs are not among the mainstream of undergraduate programs. This study analyzed the 27 transitional engineering students’ performances in solving word problems involving triangles assigned to the students in the foundation mathematics course at a regional Australian university and found that the RRR transitional engineering students demonstrated a higher level of study ethics and achievement in solving word problems involving triangles, compared with the RRR student mathematics teachers. This seems mainly due to the professional experiences in delivering real-world projects prior to the start of their mathematics learning. Further research should be expanded to more areas of mathematics to gauge the overall performances of the transitional engineering students in mathematics learning and progression.

Publisher

Bastas Publications

Subject

Education

Reference18 articles.

1. Baine, N. A. (2020). Effects of a limited implementation of the Wright state model for engineering mathematics education focused on pre-calculus students. In Proceedings of the 2020 ASEE Annual Conference & Exposition (Paper ID #30885).

2. Christensen, L. B., Johnson, R. B., Turner, & L. A. (2020). Research methods, design, and analysis. Pearson.

3. Coupland, M., Gardner, A., & Carmody, G. (2008). Mathematics for engineering education: What students say. In Proceedings of the 31st Annual Conference of the Mathematics Education (pp. 139-146). Research Group of Australasia.

4. Dundar, S. (2015). Mathematics teacher-candidates’ performance in solving problems with different representation styles: The trigonometry example. EURASIA Journal of Mathematics, Science & Technology Education, 11(6), 1379-1397. https://doi.org/10.12973/eurasia.2015.1396a

5. Fraser, S., Beswick, K., & Crowley, S. (2019). Responding to the demands of the STEM education agenda: The experiences of primary and secondary teachers from rural, regional, and remote Australia. Journal of Research in STEM Education, 5(1), 40-59. https://doi.org/10.51355/jstem.2019.62

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3