Affiliation:
1. All-Russian Scientific Research Institute of Food Biotechnology – a branch of Federal Research Center of Nutrition, Biotechnology and Food Safety
Abstract
Extrusion can be considered not only as an effective technology for processing agricultural raw materials into feed and food products, but also as a thermo-mechanical method for modification of the chemical properties of biopolymers. Carbohydrates are the most represented class of organic compounds in raw materials processed by the agro-industrial complex. The assessment of the influence of the processing factor on the final physicochemical and technological properties of various types of carbohydrates included in the chemical composition of raw materials or used as mono-ingredients is an actual task for the food industry. The review considers the issues of extrusion modification of starch in terms of the difference in the properties of amylose and amylopectin as well as the presence of lipids and organic acids in the reaction system. Processes of macromolecular degradation, gelatinization, esterification and the formation of new chemical bonds in dependence on the conditions of extrusion and the composition of mixtures are discussed. The results of studies of the influence of extrusion cooking on the changes in the physicochemical properties of non-starchy polysaccharides, cellulose, araboxylans, inulin, pectin, chitosan, and gums of various origins are presented. It has been shown that extrusion and varying of its operating regimes can significantly affect the nutritional value of extrudates including changing the glycemic index, inactivating antinutritional factors, or increasing their content in extrudates.
Publisher
FARC of the North-East named N.V. Rudnitskogo
Reference46 articles.
1. Gomez M. H., Aguilera J. M. A physicochemical model for extrusion of corn starch. Journal of Food Science. 1984;49(1):40-43. DOI: https://doi.org/10.1111/j.1365-2621.1984.tb13664.x
2. Obuchowski W., Chalcarz A., Paschke H. The effect of raw material composition on a soluble substances content as well as the direction and extend of changes in saccharides during extrusion process. Electronic Journal of Polish Agricultural Universities. Series Food Science and Technology. 2007;10(1):17. URL: http://www.ejpau.media.pl/volume10/issue1/art-17.html
3. Colonna P., Tayeb J., Mercier C. Extrusion cooking of starch and starchy products. In Extrusion Cooking, 2TH edition. USA. American Association of Cereal Chemists, 1998. 472 p. URL: https://www.amazon.com/Extrusion-Cooking-C-Mercier/dp/0913250678
4. Jackson D. S., Gomez M. H., Waniska R. D., Rooney L. W. Effects of single-screw extrusion cooking on starch as measured by aqueous high-performance size-exclusion chromatography. Cereal chemistry. 1990;67(6):529-532. URL: https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_529.pdf
5. Butrim S. M., Litvyak V. V., Moskva V. V. A study of physicochemical properties of extruded starches of varied biological origin. Russian Journal of Applied Chemistry. 2009;82(7):1195-1199. DOI: https://doi.org/10.1134/S1070427209070076
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献