MINING FIRE HOTSPOTS OVER NUSA TENGGARA AND BALI ISLANDS

Author:

Vatresia ArieORCID,Regen Rendra,Utama Ferzha PutraORCID,Oktariani Widhia

Abstract

Forest fires are still one of the most common problems in Indonesia. In fact, many of these forest fires origin from human activities, namely fires that are intentionally raised for a purpose such as widening the land to prepare for the planting season in the Nusa Tenggara Island. Forest fire events can be identified by observing hotspot data which are monitored through remote sensing satellites. Hotspot is an area that has a relatively higher surface temperature than the surrounding area based on certain temperature thresholds monitored by remote sensing satellites. The area is represented as a point that has certain coordinates. The actual fires can be monitored by observing the hotspot attribute, namely Confidence, Brightness Temperature and FRP (Fire Radiate Power). To find the similarities of the three mentioned attributes, the clustering process is carried out to make monitoring easier. The objective of this research is to cluster hotspots in the Nusa Tenggara and Bali Islands from year 2013 to 2018 using the K-Means Clustering Method with 28,519 hot spot data. This could be a benefit for the Ministry of Environment and Forestry in Indonesia to identify the priority level of the area to be monitored. By knowing  this result, the ministry can use this data for patrol priority management. This research successfully clustered three types of hotspot classes based on the risk of fire with details as follow; High Risk Class contains 12,212 data with ranges of mean values of confidence in the range of 49.3–100%, brightness in the range of 305.1–421.3o K and FRP in the range of 2.5–714.3; Medium Risk contains 12,250 data mean values of confidence  with a range of 20.3–74.3%, brightness in the range of 301.06–341.86o K and FRP in the range of 3.6–141.4; and Low Risk contains 4,057 data with a range of mean values of confidence in the range of 0–39.8%, brightness in the range of 300–365.86oK and FRP in the range of 3.5–275.6. All of the clusters were obtained by the implementation of K-Means clustering over the hotspot data and its parameter as mentioned, respectively. The cluster performance showed the confidential value of 88.45% accuracy using 100 hotspot data from 2019

Publisher

Asosiasi Peneliti dan Teknisi Kehutanan dan Lingkungan Hidup Indonesia

Subject

Ecology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3