Affiliation:
1. Department of Mathematics, University of Ilorin, Ilorin, Nigeria
Abstract
In this paper, we present results of $\omega$-order preserving partial contraction mapping creating a continuous time Markov semigroup. We use Markov and irreducible operators and their integer powers to describe the evolution of a random system whose state changes at integer times, or whose state is only inspected at integer times. We concluded that a linear operator $P:\ell^{1}(X_+)\rightarrow \ell^{1}(X_+)$ is a Markov operator if its matrix satisfies $P_{x,y}\geqslant 0$ and $\sum_{x\in X_+}P_{x,y=1}$ for all $y\in X$.
Reference13 articles.
1. A. Y. Akinyele, O. Y. Saka-Balogun and O. A. Adeyemo, Perturbation of infinitesimal generator in semigroup of linear operator, South East Asian J. Math. Math. Sci. 15(3) (2019), 53-64.
2. C. J. K. Batty, Spectral conditions for stability of one-parameter semigroups, J. Differential Equations 127 (1996), 87-96. https://doi.org/10.1006/jdeq.1996.0062
3. C. J. K. Batty, R. Chill and Y. Tomilov, Strong stability of bounded evolution families and semigroup, J. Funct. Anal. 193 (2002), 116-139. https://doi.org/10.1006/jfan.2001.3917
4. A. V. Balakrishnan, An operator calculus for infinitesimal generators of semigroup, Trans. Amer. Math. Soc. 91 (1959), 330-353. https://doi.org/10.1090/S0002-9947-1959-0107179-0
5. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献