In silico Structural Modelling of Ribokinase from Salmonella Typhi

Author:

Abubakar Hassana,Ndatsu Yakubu,Musa Achimugu Dickson,Ogbiko Cyril,Usman Hamza Boko,Mayaki Fatima Gogo,Mohammed Audu

Abstract

The knowledge of identifiable differences in the metabolism and macromolecular structure between infective agents and their host can be exploited in rational drug design. Ribokinase, an enzyme that plays an important role in the phosphorylation of several metabolites is one of such that can be exploited. This study was therefore aimed at structurally modelling ribokinase from Salmonella Typhi, the causative agent of typhoid fever, with several known multi-drug resistant strains. NCBI BLASTp was carried out against Protein Data Bank (PDB) to run a similarity search. Multiple sequence alignment between the query sequence and the templates was carried out using clustal omega and MEGA6.0 software. The amino acid sequence was submitted to modelling servers. The predicted models from the servers were evaluated with RAMPAGE and superimposed in the template using PyMOL. Model with highest Ramachandran plot score was further validated. BLASTp result showed low identity of (41%) with pyridoxal kinase from Trypanosoma brucei in PDB database. Conserved sequence motifs were confirmed. Template 4X8F was chosen based on its high identity, query cover and appearance in the modeling tools. Swiss model showed best Ramachandran plot score (94.9%). ERRAT analysis showed quality factor: 92.9078 and VERIFY3D server showed that 84.43% of the residues have an average score of 3D/ ID score >=0.2. Superimposition confirmed the alignment of the active site residues having aspartic acid as the catalytic residue. This study can serve as a means for rational drug design for the treatment of typhoid fever.

Publisher

Earthline Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. For Someone, You Are the Whole World: Host-Specificity of Salmonella enterica;International Journal of Molecular Sciences;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3