Comparison of Stationarity on Ljung Box Test Statistics for Forecasting

Author:

Dare Jayeola1,Patrick Aye O.1,Oyewola David O.2

Affiliation:

1. Department of Mathematical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria

2. Department of Mathematics & Computer Science, Federal University, Kashere P.M.B 0182, Gombe, Nigeria

Abstract

The movements in Asset prices are very complex, therefore seem to be unpredictable. However, one of the main challenges of the econometric models is to get the best data for forecasting in order to present accurate results. This paper investigates the performance of stationary and non-stationary data on Ljung Box test statistics, to check the fitness of the data for forecasting. In the paper three assets (Groundnut, sorghum and soya bean) are used, tests are conducted for Ljung box statistics; Correlogram, Histogram Normality and Heteroscedasticity test. It is observed that stationary data are better for forecasting than non-stationary data in this research.

Publisher

Earthline Publishers

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting Method for Optimal Diversification;Earthline Journal of Mathematical Sciences;2024-01-18

2. A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis;Reliability Engineering & System Safety;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3