Fitted Copula Statistical Models for Four African and Four Major Stock Markets

Author:

Adum Ngozi Fidelia,Obiora-Ilouno Happiness Onyebuchi,Eze Francis Chukwuemeka

Abstract

The application of copula has become popular in recent years. The use of correlation as a dependence measure has several pitfalls and hence the application of regression prediction model using this correlation may not be an appropriate method. In financial markets, there is often a non-linear dependence between returns. Thus, alternative methods for capturing co-dependency should be considered, such as copula based ones. This paper studies the dependence structure between the four largest African stock markets in terms of market capitalization and other developed stock markets over the period 2003 to 2018 using copula models. The value at risk was used to determine the risk associated with the stock. The ten copula models were fitted to the log returns calculated from the data, two countries at a time of the twenty-eight pairs and examined. The Gumbel copula gives the best fit in terms of log-likelihood values, value of the Akaike information criterion, value of the Bayesian information criterion, value of the consistent Akaike information criterion, value of the corrected Akaike information criterion, value of the Hannan Quinn criterion and p-value of the information matrix equality of White. Estimates of value at risk with probability p for daily returns were computed using the best fitted copula model, from these value at risk, it is seen that SA/FTSE100 have the least risk while EGY/KEN has the highest risk. Prediction is given in terms of correlation and value at risk.

Publisher

Earthline Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3