The Convex (\delta,L) Weak Contraction Mapping Theorem and its Non-Self Counterpart in Graphic Language

Author:

Ampadu Clement Boateng

Abstract

Let $(X,d)$ be a metric space. A map $T:X \mapsto X$ is said to be a $(\delta,L)$ weak contraction [1] if there exists $\delta \in (0,1)$ and $L\geq 0$ such that the following inequality holds for all $x,y \in X$: $d(Tx,Ty)\leq \delta d (x,y)+Ld(y,Tx)$ On the other hand, the idea of convex contractions appeared in [2] and [3]. In the first part of this paper, motivated by [1]-[3], we introduce a concept of convex $(\delta,L)$ weak contraction, and obtain a fixed point theorem associated with this mapping. In the second part of this paper, we consider the map is a non-self map, and obtain a best proximity point theorem. Finally, we leave the reader with some open problems.

Publisher

Earthline Publishers

Reference11 articles.

1. V. Berinde, Approximation fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9(1) (2004), 43-53.

2. Vasile I. Istratescu, Some fixed point theorems for convex contraction mappings and convex nonexpansive mappings (I), Libertas Math. 1 (1981), 151-163.

3. Clement Boateng Ampadu, A new proof of the convex contraction mapping theorem in metric spaces, Internat. J. Math. Arch., to appear. https://drive.google.com/file/d/0BwtkpMtWoUlEV0d4QUhnaVlqOHc/view

4. Clement Ampadu, Fixed Point Theory for Higher-Order Mappings, lulu.com, 2016. ISBN: 5800118959925

5. Jeffery Ezearn, Higher-order Lipschitz mappings, Fixed Point Theory Appl. 2015, 2015:88, 18 pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3