GETARI: Dataset untuk Klasifikasi Gerakan Dasar Tari Bali Perempuan

Author:

I Putu Putra Budha Lantara ,I Putu Dwi Payana ,Gede Ariel Septian Pratama ,Wayan Evan Ada Munayana ,Kadek Sri Nopiani ,Hendrawan I Nyoman Rudy

Abstract

Tari Bali adalah salah satu daya tarik kultural yang selalu dilestarikan oleh masyarakat Bali dari dulu hingga sekarang. Hingga saat ini banyak upaya telah dilakukan oleh masyarakat untuk mengabadikan karya seni Tari Bali ke dalam media digital. Salah satu pendekatan yang dapat digunakan dalam rangka preservasi karya seni Tari Bali yaitu dengan pendekatan teknologi machine learning. Pada penelitian ini dilakukan pembuatan dataset gerakan dasar Tari Bali yang merupakan kelanjutan dari penelitian sebelumnya yaitu, enam gerakan dasar Tari Bali yakni, ngelung, ngeseh, tapak sirangpada, ngeed, ngelo, dan ngumbang, yang dinamakan GETARI. GETARI kemudian diklasifikasikan dengan menggunakan model pre-trained VGG-LSTM dan I3D. Berdasarkan hasil training pada model VGG-LSTM didapatkan nilai validation loss sebesar 1,01 dan akurasi sebesar 0,57, sedangkan I3D memperoleh nilai validation loss sebesar 0,03 dan akurasi sebesar 0,97. Perubahan strategi training menurunkan validation loss VGG-LSTM menjadi sebesar 0,18 dengan akurasi mencapai 0,94. Selain itu dilakukan juga pengukuran terhadap metrik klasifikasi lainnya seperti precision, recall, dan F1. Secara keseluruhan, kinerja pada data test memperlihatkan bahwa model I3D tetap menjadi yang terbaik diantara keduanya, dengan nilai akurasi sebesar 0,97, precision sebesar 0,98, recall sebesar 0,98, dan F1 juga sebesar 0,98. Penelitian ini merupakan salah tahap awal dari pengembangan dataset gerakan dasar Tari bali dan juga pengembangan model machine learning untuk mengklasifikasikan gerakan dasar Tari Bali. Model yang dikembangan dapat dijadikan sebagai acuan dalam pengembangan model machine learning lainnya.

Publisher

Universitas Pendidikan Ganesha

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3