Performance Comparison of Experimental IoT Based Drip and Fibrous Capillary Irrigation Systems in The Cultivation of Cantaloupe Plants

Author:

Abioye Abiodun EmmanuelORCID,Zainal Abidin Mohammad Shukri,Azimi Mahmud Mohd Saiful,Buyamin Salinda,Ishak Mohamad Hafis Izran,Abd Rahman Muhammad Khairie Idham,Zangina Umar

Abstract

The demand for freshwater and food is on the increase due to the rapid growth in the world’s population, while the effect of global warming and climate change poses a severe threat on water use and food security. Conventional irrigation system suffers due to an inefficient management of water and energy, while insufficient supply of water to plant increases their stress which often affects its growth and development. Hence, there is a need to increase research focus on water use efficiency in irrigation agriculture. This paper is aimed at investigating the performance of smart drip and subsurface fibrous capillary irrigation experiment for the cultivation of cantaloupe plant to increase the yield and quality of fruit while decreasing the water and energy usage. To achieve enhancement of subsurface fibrous capillary and drip irrigation system, an Internet of Things (IoT) approach was used to improve monitoring of soil, weather, plant and control of water application. The performance comparisons of both methods was evaluated in terms of water-saving in greenhouse cultivation experiment. The results obtained, shows that the smart fibrous capillary irrigation has water use efficiency of 19 g/Litre with average fruit sweetness of13.5 Brix. While, drip irrigation has 4.85 g/Litre and average sweetness of 10 Brix on the harvested fruit after 90 days of cantaloupe plant cultivation experiment. These have shown that precision irrigation through enhanced smart fibrous capillary irrigation can be used to achieve high water-saving and a good quality yield. It is expected that the research output will help to improve water-saving agriculture towards achieving food security.Keywords: Water Saving; Capillary Irrigation; Drip Irrigation; Internet of Things; Water Use Efficiency

Publisher

HH Publisher

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3