A Comparative Study of Transfer Learning and Fine-Tuning Method on Deep Learning Models for Wayang Dataset Classification

Author:

Mustafid Ahmad,Pamuji Muhammad Murah,Helmiyah Siti

Abstract

Deep Learning is an essential technique in the classification problem in machine learning based on artificial neural networks. The general issue in deep learning is data-hungry, which require a plethora of data to train some model. Wayang is a shadow puppet art theater from Indonesia, especially in the Javanese culture. It has several indistinguishable characters. In this paper, We tried proposing some steps and techniques on how to classify the characters and handle the issue on a small wayang dataset by using model selection, transfer learning, and fine-tuning to obtain efficient and precise accuracy on our classification problem. The research used 50 images for each class and a total of 24 wayang characters classes. We collected and implemented various architectures from the initial version of deep learning to the latest proposed model and their state-of-art. The transfer learning and fine-tuning method showed a significant increase in accuracy, validation accuracy. By using Transfer Learning, it was possible to design the deep learning model with good classifiers within a short number of times on a small dataset. It performed 100% on their training on both EfficientNetB0 and MobileNetV3-small. On validation accuracy, gave 98.33% and 98.75%, respectively.

Publisher

Al-Jamiah Research Centre

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Texture Classification of Paddy Soil using Convolutional Neural Network;2023 International Conference on Networking, Electrical Engineering, Computer Science, and Technology (IConNECT);2023-08-25

2. CNN Based Transfer Learning for Malaria Parasite Detection Using Thin-Blood Smear Images;7th International Conference on Sustainable Information Engineering and Technology 2022;2022-11-22

3. Comparative Transfer Learning Techniques for Plate Number Recognition;2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom);2022-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3