A Two-stage Model: Investment Market Trading Model Based on Prediction and Adaptive Strategies

Author:

Li Shancheng,Hu Kefei,Wu Yuyang

Abstract

Market traders buy and sell volatile assets frequently, with a goal to maximize their total return. Two such assets are gold and bitcoin. This paper constructs a two-stage model for price prediction and trading strategy formulation. Firstly, we build a dynamic ARIMA-LSTM hybrid model. And before applying it, we use CEEMDAN method to decompose the non-stationary time series first and then reconstruct the final result by predicting each IMF and summing up weighted. And then the model can update the training set dynamically when new price data is released. After getting prices predicted, we calculated several quantitative trading indicators so that we can make decisions more comprehensively instead of only focusing on the predicted price. And we use semi-supervised SVM to develop an adaptive strategy to maximize the total return. Finally, we demonstrate the superiority of our strategy from two perspectives. In actual investment transactions, the two-stage model can be used as a guide for the formulation of trading strategies, thereby avoiding risks and increasing returns.

Publisher

Boya Century Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3