Research on the House Price Forecast Based on machine learning algorithm

Author:

Weng Weinan

Abstract

House price experiences some fluctuations every year, due to some potential factors such as location, area, facilities and so on. Housing price prediction is a significant topic of real estate, and it is beneficial for buyers to make strategy decisions about house dealing. There are many research on house price forecast, yet the current research cannot comprehensively compare and analyze the popular house price prediction approach. Constructing a model begins with pre-processing data to fill null values or remove data outliers and the categorical attribute can be shifted into required attributes by using one hot encoder methodology. This paper used the following five algorithms decision tree, random forest regression, Adaptive Boosting (AdaBoost), Gradient Boosting Decision Tree (GBDT), and extreme gradient boosting (XGBoost) this paper utilized to predict house prices and compared according to the root mean squared error. This paper found GBDT and XGBoost have more accurate prediction results compared with other algorithms. Besides, this paper found which features most affect the price of a house. In real-world applications, machine learning based housing price prediction models are utilized by banks and financial institutions to obtain better house price assessment, risk analysis and lending decisions.

Publisher

Boya Century Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3