Stock Prediction Methodology using Artificial Neural Network: Application in Tesla stock price

Author:

Wu Wanxing

Abstract

Contemporarily, the stock price fluctuates dramatically under the impact of lots of stochastic events (e.g., COVID-19, Russian-Ukraine conflicts). With the progress of machine learning techniques, it is feasible to predict the price accurately so that to inhibit the impacts of price variation. In this paper, the feasibility to forecast the price of underlying assets based on artificial neural network is investigated and discussed. For the sake of implementing the forecasting approach, the python Keras model is applied and different parameters are scanned. To give an intuitive example, the high volatility stock Tesla is selected as the target. According to the analysis, the state-of-art deep learning scenario is capable of prediction the price with high accuracy (i.e., above 95% R-square value). Nevertheless, some of the overfitting effects should be considered for applying such approach. Overall, these results shed light on guiding further exploration of implementing advanced machine learning approach to forecast the price of stock.

Publisher

Boya Century Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3