Effect of Ship-Induced Langmuir-Type Circulations on Distribution of Surface-Active Substances and Damping of Short Wind Waves

Author:

Somero Ryan1,Basovich Andre2,Paterson Eric3

Affiliation:

1. Virginia Tech, Blacksburg / Newport News Shipbuilding, A Division of Huntington Ingalls Industries

2. Cortana Corporation

3. Virginia Tech, Blacksburg

Abstract

It has recently been shown that the interaction of ship-generated nonuniform currents with ambient surface waves can lead to the generation of Langmuir-type circulations (LTCs) (Basovich 2011) and a persistent wake (Somero et al. 2018). Based on this work, it is shown here that the LTC and surface currents of the persistent wake are responsible for the redistribution of surface-active substances (SAS) and a corresponding change in the damping of short surface waves. The persistent wake is a region of the ship wake, where initial ship-generated perturbations have mostly decayed. The LTCs are similar in nature to Langmuir circulations which arise as a result of instability of wind-driven current. LTCs produce a secondary flow with velocity transverse to the direction of the ship, and width significantly larger than the ship beam. Because LTCs are generated in large scale, they persist for a long time after the passage of the ship. Transverse surface currents produced by LTCs in the ship wake redistribute the SAS films at the sea surface. These currents create strong convergence and divergence zones which in turn produce streaks with different concentrations of SAS. The change in concentration of SAS affects the film pressure and the damping effect of SAS on the short surface waves. This effect is represented by a damping factor and is a crucial parameter in determination of the spectral density of short wind waves. Therefore, the damping effect of the film, as represented by the damping factor, is responsible for sea surface roughness modification and is important for prediction of synthetic-aperture RADAR (SAR) imagery of ship wakes on the ocean surface. In this article, we present the mathematical and computational methods, along with simulation results for a naval surface combatant operating in calm, head, and following seas. The simulation results clearly show that the convergence and divergence zones strongly influence the relative SAS concentration and the spatial distribution of the damping factor, the latter of which defines the structure of SAR images of the persistent wake. Comparisons of the magnitude of the damping factor with available SAR data are shown to be in good agreement.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3