Air Entrainment and Surface Fluctuations in a Turbulent Ship Hull Boundary Layer

Author:

Masnadi Naeem1,Erinin Martin A.1,Washuta Nathan1,Nasiri Farshad2,Balaras Elias2,Duncan James H.1

Affiliation:

1. University of Maryland, College Park

2. The George Washington University

Abstract

Air entrainment due to turbulence in a free-surface boundary layer shear flow created by a horizontally moving vertical surface-piercing wall is studied through experiments and direct numerical simulations (DNS). In the experiments, the moving wall is created by a laboratory-scale device composed of a surface-piercing stainless steel belt that travels in a loop around two vertical rollers; one length of the belt between the rollers simulates the moving wall. The belt accelerates suddenly from rest until reaching constant speed and creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. We report cinematic laser-induced fluorescence measurements of water surface profile histories, cinematic observations and measurements of air entrainment events, and air bubble size distributions and motions. To complement the experiments, DNS of the temporally evolving turbulent boundary layer were conducted, considering both the air and water phases. Because of cost considerations, only a portion of the belt was simulated at a lower Reynolds number, keeping the Froude number, however, at the same levels as in the experiments. The results of the experiments and DNS are found to be in qualitative agreement and are used synergistically to explore the physics of the air entrainment process; quantitative agreement is not to be expected given the differences in setup and Reynolds numbers. In the experiments and DNS, the free-surface motion is found to consist of a region near the belt with fast-moving uncorrelated large-amplitude ripples and an outer region of small-amplitude propagating waves. Entrainment events similar to plunging breaking waves are found in the experiments, and these and other entrainment mechanisms are examined in detail in the DNS. The spatial distributions of bubble numbers and velocities are reported along with their diameter distributions.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3