Cycle-Time Estimation for Forming Curved Plates Using Neural Networks

Author:

Song Jinho1,Lee Junhee1,Kim Daewoon1,Kim Won-Don2,Kang Tae-Won2,Kim Jeung-Youb3,Nam Jong-Ho4,Ko Kwanghee1

Affiliation:

1. Gwangju Institute of Science and Technology, Gwangju

2. Marine Tech-In, Co., Ltd.

3. ILJOO GnS Co. Ltd.

4. Korea Maritime and Ocean University, Busan

Abstract

This article introduces an artificial neural network (ANN) model to determine cycle-times for forming curved hull plates when the target shape is known. The proposed model aids shipbuilding companies in predicting the cycle-times required for ship fabrication. The input parameters are geometric information extracted from the target shape (curvedness, Gaussian curvature, width, and height of the hull plate), and the output parameter is the heating duration per unit area. The structure of the proposed model, which predicts cycle-times for line heating after the cold forming case, consists of two hidden layers. The proposed model is convenient to use and flexible because it only requires retraining when the dataset is changed. The performance of the proposed model was analyzed by five-fold cross-validation and compared with that of a mathematical model obtained from the linear regression analysis method and predefined formulas. The results show that the ANN model is reliable and accurate for the cycle-time prediction of curved hull plates in shipbuilding applications. Introduction Shipbuilding companies generally estimate the production cost of a ship based on their previous ships for various purposes before the production planning department begins to optimize the fabrication process. They use the estimated value to refine the overall fabrication process or improve it by reducing unnecessary tasks and maximize the overall production efficiency.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3