Application of a Numerical Optimization Technique to the Design of Cavitating Propellers in Nonuniform Flow

Author:

Mishima Shigenori1,Kinnas Spyros A.2

Affiliation:

1. Japan Defense Agency

2. The University of Texas at Austin

Abstract

High-speed propulsor blades often experience moderate to substantial amounts of unsteady cavitation, and up to now have been designed via design methods for noncavitating blades combined with methods for the analysis of cavitating flows in a trial-and-error manner. In this paper, a numerical nonlinear optimization algorithm is developed for the automated, systematic design of cavitating blades. The method is first applied to the design of propeller blades in uniform flow. The blade mean camber surface is defined via a cubic B-spline polygon net in order to facilitate the handling of the geometry, and to reduce the number of the design parameters. Noncavitating blade geometries designed by the present method are directly compared with those designed via an existing lifting-line/lifting-surface design approach. Finally, the optimization algorithm is applied to the design of cavitating blades in nonuniform flow. The objective of the design is to obtain maximum propeller efficiency for given conditions by allowing controlled amounts of sheet cavitation. Several constraints on the unsteady cavity characteristics, such as the area of cavity planform and the amplitudes of the cavity volume velocity harmonics, are incorporated in the optimization technique. The effect of the constraints on the efficiency of the propeller design is demonstrated with various test cases.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3