Wave-Current Interaction with a Large Three-Dimensional Body by THOBEM

Author:

Kim D. J.1,Kim M. H.1

Affiliation:

1. Texas A&M University, College Station

Abstract

The effects of uniform steady currents (or small forward velocity) on the interaction of a large three-dimensional body with waves are investigated by a time-domain higher-order boundary element method (THOBEM). The current speed is assumed to be small so that the viscous effects and the steady wave system generated by currents are insignificant. Using regular perturbation with two small parameters є and δ associated with wave slope and current velocity, respectively, the boundary value problem is decomposed into the zeroth-order steady double-body-flow problem at 0(δ) with a rigid-wall free-surface condition and the first-order unsteady wave problem with the modified free-surface and body-boundary conditions expanded up to O(eδ). Higher-order boundary integral equation methods are then used to solve the respective problems with the Rankine sources distributed over the entire boundary. The free surface is integrated at each time step by Adams-Bashforth-Moulton method. The Sommerfeld/Orlanski radiation condition is numerically implemented to absorb all the wave energy at the open boundary. To solve the so-called corner problem, discontinuous elements are used at the intersection of free-surface and radiation boundaries Using the developed numerical method, wave forces, wave field and run-up, mean drift forces and wave drift damping are calculated.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3