Laser Forming for Flexible Fabrication

Author:

Masubuchi Koichi1,Jones Jerry E.2

Affiliation:

1. Massachusetts Institute of Technology

2. N. A. Technologies

Abstract

A 36-month program supported by the Defense Advanced Research Projects Agency (DARPA) was conducted to demonstrate the feasibility to predictably laser form a variety of ferrous and non-ferrous metals of different thickness. Laser forming provides a method of producing complex shapes in sheet, plate, and tubing without the use of tooling, molds, or dies. By heating a localized area with a laser beam, it is possible to create stress states that result in predictable deformation. This research program has developed, refined and demonstrated constitutive and empirical, and neural network models to predict deformation as a function of critical parametric variables and established an understanding of the effect of laser forming on some metallurgical properties of materials. The program was organized into two, time-phased tasks. The first task involved forming flat plates to one-dimensional (I -D) shapes, such as, hinge bends in various materials including low-carbon steel, high-strength steels, nickel-based super alloys, and aluminum alloys. The second task expanded the work conducted in the first task to investigate three-dimensional (3-D) configurations. The models were updated, 3-D specimens fabricated and evaluated, and cost benefit analyses were performed.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of convex hull plate forming by pure line heating;Journal of Marine Science and Application;2004-12

2. Thermomechanical analysis through a pseudolinear equivalent constant stiffness system;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2003-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3