A Numerical Study on Sloshing Flows Coupled with Ship Motion—The Anti-Rolling Tank Problem

Author:

Kim Yonghwan1

Affiliation:

1. American Bureau of Shipping (ABS)

Abstract

A computational study on the sloshing problem coupled with ship motion in waves is introduced. The ship motion excites the sloshing flow in the ship's liquid cargo, and the slosh-induced forces and moments affect the ship motion in return. This study applies a numerical method to solve the coupling problem of the ship motion and sloshing flow. In particular, it concentrates on the anti-rolling tank, which has the most significant coupling effects of two problems. The three-dimensional sloshing flow has been simulated using the finite-difference method, while the ship motion has been obtained using a time-domain panel method. At each time step, the instantaneous displacement, velocity and acceleration of ship motion have been applied to the excitation of liquid motion, and the corresponding slosh-induced forces and moments have been added to the wave-induced excitation. The computational model is a modified S175 hull, and the computational results have been compared with the experimental data of a supply vessel. Although the two hull forms are not identical, the numerical result for the modified S175 hull shows the same trend of the roll RAOs with experimental data when the anti-rolling tanks are considered. Therefore, the numerical method introduced in this study is expected to be very useful in observing the coupling effects of sloshing and ship motion problems.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3