Study on Mixed Pulse Converter (MIXPC) Turbocharging System and Its Application in Marine Diesel Engines

Author:

Cui Yi1,Gu Hongzhong1,Deng Kangyao1,Yang Shiyou1

Affiliation:

1. Shanghai Jiao Tong University

Abstract

In order to improve fuel efficiency and power density, the boost pressure of diesel engine is increasing continuously. The increase in boost level leads to some problems, such as lack of air under part load operating conditions, response delay during transient processes, and high mechanical and thermal load. In order to meet the high boost level demand, a new type of turbocharging system—mixed pulse converter (MIXPC) turbo-charging system for multicylinder diesel engines (from 4 to 20 cylinders) has been invented. A turbocharged diesel engine simulation model, based on one-dimensional finite volume method (FVM) and total variation diminishing (TVD) scheme, has been developed and used to design and analyze the MIXPC turbocharging system. The applications of MIXPC system in in-line 8- and 4-cylinder and V-type 16-cylinder medium-speed marine diesel engines have been studied by calculation and experiments. The results show that the invented MIXPC system has superior engine fuel efficiency and thermal load compared with original turbocharging systems.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and Optimization on the Exhaust Flow Characteristics Based on Energy-Splitting Method of the Low-Speed Marine Diesel Engine;Journal of Energy Resources Technology;2023-12-11

2. Performance Analysis and Optimization Design of Exhaust System for Turbocharging Diesel Engines;International Journal of Automotive Technology;2021-05-31

3. Numerical and experimental investigation of exhaust manifold configurations of turbo-charged diesel engines;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2020-10-27

4. Preliminary study on a variable-geometry exhaust manifold turbocharging system;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2011-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3