Low-Speed Controllability of Ships in Wind

Author:

Eda H.1

Affiliation:

1. Stevens Institute of Technology

Abstract

Aerodynamic and hydrodynamic data for the Manner-class vessel, gathered in earlier experiments, were used to formulate a mathematical model representing the dynamic behavior of ships in wind. A digital computer was used to solve the eigenvalues of the system. Perturbation equations were linearized, with respect to equilibrium conditions, from nonlinear equations of motion. In addition, ship trajectory in certain wind conditions was examined by means of numerical solutions of the nonlinear equations of motion. Results indicate that the ship in bow wind tends, even without an autopilot system, to maintain its original course-with perturbation in yaw inducing yaw oscillations, the convergence of which depends upon the magnitude of relative wind velocity. It is shown that beam wind creates greater difficulties, although the use of an adequate autopilot increases the region of stability in wind of certain velocities (except in some conditions of relatively strong beam wind). An increase in rudder size is shown to improve controllability in wind significantly. Computations with and without the assumption of constant longitudinal speed indicate that the effect of surge motion on yaw and sway responses in wind is important, especially in beam wind.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Ship Manoeuvrability Criteria and Standards;Journal of Marine Science and Engineering;2021-08-21

2. Course stability and yaw motion of a ship in steady wind;Journal of Marine Science and Technology;2012-04-18

3. Mooring System Design Based on Analytical Expressions of Catastrophes of Slow-Motion Dynamics;Journal of Offshore Mechanics and Arctic Engineering;1997-05-01

4. Analytical expressions of the bifurcation boundaries for symmetric spread mooring systems;Applied Ocean Research;1995-12

5. Stability of single point mooring systems;Applied Ocean Research;1986-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3