High-Fidelity Hydrodynamic Shape Optimization of a 3-D Hydrofoil

Author:

Garg Nitin1,Kenway Gaetan K.W.1,Lyu Zhoujie1,Martins Joaquim R.R.A.1,Young Yin L.1

Affiliation:

1. University of Michigan

Abstract

With recent advances in high-performance computing, computational fluid dynamics (CFD) modeling has become an integral part in the engineering analysis and even in the design process of marine vessels and propulsors. In aircraft wing design, CFD has been integrated with numerical optimization and adjoint methods to enable high fidelity aerodynamic shape optimization with respect to large numbers of design variables. There is a potential to use some of these techniques for maritime applications, but there are new challenges that need to be addressed to realize that potential. This work presents a solution to some of those challenges by developing a CFD-based hydrodynamic shape optimization tool that considers cavitation and a wide range of operating conditions. A previously developed three-dimensional compressible Reynold saveraged Navier-Stokes (RANS) solver is extended to solve for nearly incompressible flows, using a low-speed preconditioner. An efficient gradient-based optimizer and the adjoint method are used to carry out the optimization. The modified CFD solver is validated and verified for a tapered NACA 0009 hydrofoil. The need for a large number of design variables is demonstrated by comparing the optimized solution obtained using different number of shape design variables. The results showed that at least 200 design variables are needed to get a converged optimal solution for the hydrofoil considered. The need for a high-fidelity hydrodynamic optimization tool is also demonstrated by comparing RANS-based optimization with Euler-based optimization. The results show that at high lift coefficient (CL) values, the Euler-based optimization leads to a geometry that cannot meet the required lift at the same angle of attack as the original foil due to inability of the Euler solver to predict viscous effects. Single-point optimization studies are conducted for various target CL values and compared with the geometry and performance of the original NACA 0009 hydrofoil, as well as with the results from a multipoint optimization study. A total of 210 design variables are used in the optimization studies. The optimized foil is found to have a much lower negative suction peak, and hence delayed cavitation inception, in addition to higher efficiency, compared to the original foil at the design CL value. The results show significantly different optimal geometry for each CL, which means an active morphing capability was needed to achieve the best possible performance for all conditions. For the single-point optimization, using the highest CL as the design point, the optimized foil yielded the best performance at the design point, but the performance degraded at the off-design CL points compared to the multipoint design. In particular, the foil optimized for the highest CL showed inferior performance even compared to the original foil at the lowest CL condition. On the other hand, the multipoint optimized hydrofoil was found to perform better than the original NACA 0009 hydrofoil over the entire operation profile, where the overall efficiency weighted by the probability of operation at each CL, is improved by 14.4%. For the multipoint optimized foil, the geometry remains fixed throughout the operation profile and the overall efficiency was only 1.5% lower than the hypothetical actively morphed foil with the optimal geometry at each CL. The new methodology presented herein has the potential to improve the design of hydrodynamic lifting surfaces such as propulsors, hydrofoils, and hulls.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3