Numerical Modeling of Hydrodynamic Impact and Local Slamming Effects

Author:

Mohtat Ali1,Challa Ravi1,Yim Solomon C.1,Judge Carolyn Q.2

Affiliation:

1. Oregon State University

2. US Naval Academy

Abstract

Numerical simulation and prediction of short duration hydrodynamic impact loading on a generic wedge impacting a water free-surface is investigated. The fluid field is modeled using a finite element (FE) based arbitrary Lagrangian-Eulerian (ALE) formulation and the structure is modeled using a standard Lagrangian FE approximation. Validation of the numerical method against experimental test data and closed form analytical solutions shows that the ALE-FE/FE continuum approach captures the impact behavior accurately. A detailed sensitivity analysis is conducted to study the role of air compressibility, deadrise angle, and impact velocity in estimation of maximum impact pressures. The pressure field is found to be insensitive to air compressibility effect for a wide range of impact velocities and deadrise angles. A semi-analytical prediction model is developed for estimation of maximum impact pressures that correlates deadrise angle, impact velocity, and a nonlinear interaction term that couples hydrodynamic effects between these parameters. The numerical method is also used to examine the intrinsic physics of water impact on a high-speed planing hull with the goal of predicting slamming loads and resulting motions.

Publisher

SNAME

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3