Propeller and Engine Performance of Commercial Windships: Benefits and Trade-Offs

Author:

Reche-Vilanova Martina1,Bingham Harry B.2,Fluck Manuel3,Morris Dale4,Psaraftis Harilaos N.2

Affiliation:

1. North Windships / Technical University of Denmark, Lyngby

2. Technical University of Denmark, Lyngby

3. WISAMO Michelin

4. North Windships

Abstract

_ Wind propulsion systems (WPS) for commercial ships can be a key ingredient to achieving the IMO green targets. Most WPS installations will operate in conjunction with propellers and marine engines in a hybrid mode, which will affect their performance. The present paper presents the development of a generic, fast, and easy tool to predict the propeller and engine performance variation, along with the cost, as a function of the wind power installed in two operation conditions: fixed ship speed and constant shaft speed. Specific focus is directed toward showing generic trends and trade-offs that inform economic decision-making. To this end, a key feature of the presented work is the ability to assess the cost–benefit of both controllable pitch propellers and fixed pitch propellers (CPPs and FPPs). This provides advice on when, in terms of WPS installation size, it is worthwhile to install which kind of propeller. CPPs are found to be more suitable for newly built wind-powered ships (>70% wind power), while a conventional FPP is satisfactory for wind-assisted ships (<70% wind power) and retrofitted installations. The results for a 91,373 GT bulk carrier showed that a WPS unloads the propeller and the engine, which leads to an increase in the propulsive efficiency and a detrimental rise of the engine specific fuel oil consumption. However, propeller gains are found to be greater than engine losses, which result in extra savings. Thus, not only does a WPS save fuel and corresponding pollutant emissions, but it also increases the entire propulsive efficiency. Keywords Windship; sailing ship; wind propulsion technologies; propulsion; performance prediction; marine engines; decarbonization; alternative propulsion

Publisher

The Society of Naval Architects and Marine Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3