Reduction of Overwelding and Distortion for Naval Surface Combatants. Part 2: Weld Sizing Effects on Shear and Fatigue Performance

Author:

Huang T. D.1,Harbison Michael1,Kvidahl Lee1,Niolet David1,Walks John1,Christein J. P.2,Smitherman Mark3,Phillippi Mark3,Dong Pingsha4,DeCan Larry4,Caccese Vince5,Blomquist Paul6,Kihl David1,Wong Rick1,Sinfield Matthew1,Nappi Natale7,Gardner James7,Wong Catherine7,Bjornson Michael7,Manuel Allen8

Affiliation:

1. HII-Ingalls Shipbuilding

2. HII-Newport News Shipbuilding

3. Concurrent Technologies Corporation (CTC)

4. University of New Orleans

5. University of Maine

6. Applied Thermal Sciences, Inc.

7. Naval Sea Systems Command (NAVSEA)

8. DDL Omni

Abstract

As high-strength thinner-steel implementation in ship designs increase, dimensional management becomes critical to control construction costs and schedule in ship production. In the U.S. shipbuilding industry, improvements to shipbuilding facilities and processing technology have not kept pace with the rate of change in ship design. Additionally, new designs using thinner steels are subject to legacy weld sizing criteria possibly leading to inappropriately sized welds on lightweight materials. These two factors result in widespread overwelding, causing severe plate deformation in naval vessels during construction and nonvalue added labor to correct as needed for fit-up tolerances. Historically, shear and fatigue strength data has been focused on the larger welds and thicker steel plates typical of the state of the practice when these legacy weld sizing criteria were developed. In order to optimize weld design and production in modern, lightweight naval surface vessels, there is a need to develop more accurate data about the performance of precision fillet welds for thin steels.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3