Evolution in Design Methodology for Complex Electric Ships

Author:

Bucci Vittorio1,Sulligoi Giorgio1,Chalfant Julie2,Chryssostomidis Chryssostomos2

Affiliation:

1. University of Trieste, Trieste

2. Massachusetts Institute of Technology, Cambridge

Abstract

Modern ships are highly complex technological systems and have a long and resource-intensive development cycle. Moreover, the final design must comply with many specific technical and regulatory requirements while constraining the capital and operational expenditures. Decisions made during the early stages of design have a large impact on ship functionality and determine the overall configuration of the ship; the advanced computational resources available today can be used to change the traditional approach to ship design, significantly improving the data available for these early-stage decisions. Moreover, the new methodologies can improve the ability to assess the impact of innovative technologies such as those inherent in the complete electrification of ships, and can simultaneously allow visualization of a three-dimensional (3D) virtual prototype of the designs. In this article, a methodological approach is presented that exemplifies these advantages.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Next generation Amphibious Vessel: an innovative power and propulsion system;2023 IEEE Electric Ship Technologies Symposium (ESTS);2023-08-01

2. Methanol fuelled hybrid propulsion system for a charter yacht;2023 International Conference on Clean Electrical Power (ICCEP);2023-06-27

3. Impact of Fuel Switch to Methanol on the Design of an all Electric Cruise Ship;2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC);2023-03-29

4. Digital Transformation, Applications, and Vulnerabilities in Maritime and Shipbuilding Ecosystems;Procedia Computer Science;2023

5. Comparison between high-efficiency propulsion systems in electric ship applications;2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM);2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3