Ship Drag Reduction by Microalgal Biopolymers: A Feasibility Analysis
Author:
Gasljevic K.1,
Matthys E. F.1
Affiliation:
1. University of California at Santa Barbara
Abstract
We have investigated the feasibility of using high-molecular-weight polysaccharides produced by marine microalgae to reduce the drag on ships and therefore to be able to reduce the needed propulsion power and fuel costs or, alternatively, to increase the ship speed. Experimental and analytical studies were used to answer four critical questions:How suitable are the biopolymers for drag reduction on ships?What is the needed polymer consumption rate at a given level of drag reduction?What is the achievable polymer production rate that can be achieved by the microalgae?What are possible modes of implementation of the proposed technology?
It is seen that in situ production of biopolymers by microalgae growing on the hull may be a possible approach to polymeric ship drag reduction. Production of biopolysaccharide off the ship and even harvesting it from the ocean are other possibilities. The use of biopolymers is naturally advantageous from an environmental point of view as well. Some comparison of biopolymers and synthetic polymers is also presented. Several technical issues remain to be investigated, but the information available suggests that biopolymers may be the best additives for drag reduction on ships.
Publisher
The Society of Naval Architects and Marine Engineers
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献