Analytical Expressions of the Stability and Bifurcation Boundaries for General Spread Mooring Systems

Author:

Garza-Rios Luis O.1,Bernitsas Michael M.1

Affiliation:

1. The University of Michigan

Abstract

Spread mooring systems (SMS) are labeled as general when they are not restricted by conditions of symmetry. The six necessary and sufficient conditions for stability of general SMS are derived analytically. The boundaries where static and dynamic loss of stability occur also are derived in terms of the system eigenvalues, thus providing analytical means for defining the morphogenesis that occurs when a bifurcation boundary is crossed. The equations derived in this paper provide analytical expressions of elementary singularities and routes to chaos for general mooring system configurations. Catastrophe sets are generated first by the derived expressions and then numerically using nonlinear dynamics and codimension-one and -two bifurcation theory; agreement is excellent. The mathematical model consists of the nonlinear, third-order maneuvering equations without memory of the horizontal plane, slow-motion dynamics—surge, sway, and yaw—of a vessel moored to several terminals. Mooring lines can be modeled by synthetic nylon ropes, chains, or steel cables. External excitation consists of time-independent current, wind, and mean wave drift forces. The analytical expressions derived in this paper apply to nylon ropes and current excitation. Expressions for other combinations of lines and excitation can be derived.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault monitoring and fault recovery control for position-moored vessels;International Journal of Applied Mathematics and Computer Science;2011-09-01

2. Stochastic Analysis of Nonlinear Responses of a Moored Structure Under Narrow Band Excitations;Journal of Offshore Mechanics and Arctic Engineering;2008-01-29

3. Dynamics and control of a two-body floating system under realistic environmental loads;Applied Mathematics and Computation;2005-05

4. Mooring Dynamics Phenomena Due to Slowly-Varying Wave Drift;Journal of Offshore Mechanics and Arctic Engineering;2004-11-01

5. A Procedure to Analyze the Maneuvering Stability of FPSO Systems in the Design Stage;Journal of Offshore Mechanics and Arctic Engineering;2002-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3