Numerical Study of 3-D Liquid Sloshing in an Elastic Tank by MPS-FEM Coupled Method

Author:

Chen Xiang1,Zhang Youlin1,Wan Decheng1

Affiliation:

1. School of Naval Architecture / Ocean and Civil Engineering / Shanghai Jiao Tong University

Abstract

The sloshing phenomenon in a partially loaded oil tanker or liquid natural gas ship is a typical fluid-structure interaction problem involving multi-physics, violent free-surface flow, and nonlinear structural response. In the past decades, the complex phenomenon has been commonly investigated without consideration of the hydro-elastic behaviors of the bulkheads. In our previous work, the liquid sloshing phenomenon in a two-dimensional (2-D) elastic tank was numerically studied. However, the bulkheads of the tank will deform within the three-dimensional (3-D) space in reality. So, it is necessary to study the 3-D sloshing problem in an elastic tank. In this article, a hybrid approach is developed within the Lagrangian system. The moving particle semiimplicit (MPS) method is used to simulate the evolution of 3-D flow with a violent free surface, and the finite element method (FEM) is used for the numerical analysis of structural response due to the impact loads of the sloshing flow. To couple the MPS method and the FEM method, an interpolation scheme based on the kernel function of the particle method is proposed for the communication on the isomerous interface between the fluid and structure domains. The reliability of force and deformation interpolation modules is validated by two tests. Then, the sloshing phenomenon in a 3-D elastic tank is numerically investigated and compared against the previous published 2-D results. By varying the Young's modulus of the tank walls, characteristics regarding the evolutions of free surface, variation of impact pressures, and dynamic responses of the structures are presented. 1. Introduction To support the transportation demands of natural resources, more and more vessels, such as the very large crude carriers and the liquid natural gas carriers, are manufactured. For these huge structures, risks such as local deformation or even damage of cargo-containment systems resulting from sloshing phenomena subsequently increase. Therefore, it is necessary to take the elasticity of the tank walls into account in the research of sloshing phenomena (Dias & Ghidaglia 2018). However, the phenomena involving the vibrations of the tank walls are complex. In the process of sloshing wave interacting with elastic bulkheads, the fragmentation, splash, and fusion of water are observed. Meanwhile, the structures vibrate nonlinearly under the impact loads resulting from the sloshing wave. These phenomena are hard to simulate realistically by the traditional mesh-based methods.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3