Steady and Unsteady Hydrodynamic Loads on the Azimuth Bearing of a POD during a Crash-Stop Maneuver

Author:

Neitzel-Petersen Jan Clemens1,Stutz Sophie Juliane2,Abdel-Maksoud Moustafa1

Affiliation:

1. Hamburg University of Technology, Hamburg

2. Siemens AG, Hamburg

Abstract

The crash-stop maneuver of a ship equipped with two pods produces the largest loads that the structure and azimuth bearing can possibly experience. For design purposes, a sufficiently fast and accurate determination of the loads is thus critically important. This study examines load estimation during crash-stop maneuvers based on model tests and numerical methods. Forces and moments are compared to determine the influence of different control parameters (azimuth rate, propeller number of revolution, etc.). In addition, the results of numerical simulations carried out in model- and full-scale are used to analyze the influence of the Reynolds number on the flow behavior. Results show a significant influence of the azimuth rate on the maximum forces and moments. The numerical calculations indicate a strong dependency of the flow stall behavior on the azimuth rate. The dynamic stall effect on the profile-shaped parts, such as the pod strut, is shifted to a larger angle of attack compared with a steady angular position. This phenomenon is also observed during the model tests. The full-scale simulations show up to a 23% increase of the forces compared with the model-scale simulations. Thus, a detailed and careful handling of the results considered in the design process is required for the load estimation.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3