Assessing the Interplay of Shape and Physical Parameters by Unsupervised Nonlinear Dimensionality Reduction Methods

Author:

Serani Andrea1,D'Agostino Danny2,Campana Emilio Fortunato1,Diez Matteo1

Affiliation:

1. Natl. Research Council - Institute of Marine Engineering, Rome

2. Natl. Research Council - Institute of Marine Engineering, Rome / Sapienza University of Rome

Abstract

The article presents an exploratory study on the application to ship hydrodynamics of unsupervised nonlinear design-space dimensionality reduction methods, assessing the interaction of shape and physical parameters. Nonlinear extensions of the principal component analysis (PCA) are applied, namely local PCA (LPCA) and kernel PCA (KPCA). An artificial neural network approach, specifically a deep autoencoder (DAE) method, is also applied and compared with PCA-based approaches. The data set under investigation is formed by the results of 9000 potential flow simulations coming from an extensive exploration of a 27-dimensional design space, associated with a shape optimization problem of the DTMB 5415 model in calm water at 18 kn (Froude number, Fr = 25). Data include three heterogeneous distributed and suitably discretized parameters (shape modification vector, pressure distribution on the hull, and wave elevation pattern) and one lumped parameter (wave resistance coefficient), for a total of 9000 x 5101 elements. The reduced-dimensionality representation of shape and physical parameters is set to provide a normalized mean squared error smaller than 5%. The standard PCA meets the requirement using 19 principal components/parameters. LPCA and KPCA provide the most promising compression capability with 14 parameters required by the reduced-dimensionality parametrizations, indicating significant nonlinear interactions in the data structure of shape and physical parameters. The DAE achieves the same error with 17 components. Although the focus of the current work is on design-space dimensionality reduction, the formulation goes beyond shape optimization and can be applied to large sets of heterogeneous physical data from simulations, experiments, and real operation measurements.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3