Predicting Ship Maintenance and Repair Labor with Artificial Neural Networks

Author:

Fruytier Pierre-Andre M.1,Dev Arun Kr2

Affiliation:

1. Consultant

2. Newcastle University, Singapore

Abstract

Ship maintenance and repair work cost estimation is often regarded as an “Art,” which may contribute to the financial success or distress of a shipyard. Regarded as experts by senior management, estimators are among the most valued resources, and nonetheless, human. Over time, estimators learn from mistakes, and get better with tenure at sharpening assessments. When estimators retire without having groomed an apprentice, shipyards may be at risk of losing a lot of know-how, all at once. These shipyards may well find very costly to experience, for a while, estimating skills stepping back on the learning curve. Yet, even shipyards relying on less advanced information technology may have unwittingly accumulated a lot of valuable data relevant to ship maintenance and repair works. These shipyards may overlook how easily accessible knowledge can be turned into a competitive advantage through predictive analytics. Not only can this data be literally mined, but machine learning algorithms, such as Artificial Neural Networks (ANN), can now process it for a speedy and preliminary estimate through faster and cheaper computing power. To be clear, the purpose is not to replace the human estimator but to help the expert quickly assess, when times are busy, whether to bid or not on a specific project opportunity. In the absence of The Master Estimator, an Apprentice may also look for a quick and cheap sanity check of the prepared estimate before submitting a bid. The study carried out in this article is based on all ship maintenance and repair data recorded at a single North American shipyard over the last 19 years since the current information systems were implemented. This raw data extract with all directly paid hours logged daily by workers on 1277 ship maintenance and repair projects was screened through advanced data cleansing. To enrich the cleansed data tables, additional independent variables were subsequently collected internally and externally to develop a training–testing data set. The final 657 projects represent 136 vessels regrouped in eight types, for which 28 other independent variables were all made available for training up to testing simple ANN models. The scope of this article is limited to the estimation of the direct labor required to complete ship maintenance and repair projects on a specific type of vessels for which workforce planning and tactical pricing was deemed the most relevant to keep the business afloat.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3