Design Considerations for Unmanned Surface Vessels in Naval Service

Author:

Strickland Jason D.1

Affiliation:

1. Office of the Under Secretary of Defense, Emerging Technologies, USA

Abstract

_ Within the evolving maritime industry, we are faced with this fundamental question: “What modifications of design practices are required to support the development of Unmanned Surface Vessels?” The trivial answer is to remove the people, but mariners and personnel afloat have been a stalwart for the operations of prior maritime vessels. So, we now begin to assess the impact of their removal/reassignment as an industry. Not only a technical challenge exists, the regulatory and statutory challenge is also worthy of noting. It is the goal of this paper to look at the potential implications and modifications required to effectively design unmanned surface vessels. Four major subelements will be required to field a successful system. These subelements are Design, Classification, Testing, and Certification. Classification, Testing, and Certification will be the focus of a future discourse. The Design subelement will be assessed across a set of categories that aligns with the U.S. Navy Ship Work Breakdown Structure. The required assessments need to be given a time horizon for contextual purposes. In support of this assertion, the targeted objective is a vessel certified for unmanned, unescorted, over the horizon, blue water operations by 2025. Introduction Humans have been designing and deploying ocean-going vessels for thousands of years, potentially since the dawn of human history based on findings on Flores Island, Indonesia; San Miguel Island, CA; and the Pesse Canoe (Rose 1998; Pringle 2008; Drents Museum 2016). During this time, the maritime industry has weathered multiple paradigm shifts in major subsystems, such as the transition from sails to steam to internal combustion engines to electric drives, none of these are as potentially disruptive as the current shift underway to unmanned vessel operations. This transition is across the maritime domain, it applies to commercial and naval applications. “The Navy wants to acquire these large unmanned vehicles (UVs) as part of an effort to shift the Navy to a more distributed fleet architecture . . .” (O’Rourke 2022). These new assets will augment and not replace traditional vessels. “We will add to our current fleet a host of manned, unmanned and optionally manned platforms operating under, on, and above the seas” (Gilday 2022).

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3