Integrated Ship Energy Flowchart: A digital twin to mitigate GHG emissions

Author:

Elias Yfantis Elias1,Ioannou Constantina1,Paradeisiotis Andreas1

Affiliation:

1. Cyprus Marine & Maritime Institute

Abstract

The alarming rate of climate change accentuates the need to reduce greenhouse gas (GHG) emissions produced from anthropogenic activities and consequently the consumption of fossil fuels. The transportation sector is one of the most energy-demanding activities, consisting around 27% of the global primary energy demand and one of the major contributors of GHG emissions to the atmosphere, while shipping transportation accounts for nearly 12% of its CO2 emissions. Decarbonization is vital for emission mitigation using innovative technologies, policies, and incentives at a local and international level. In this context, the presented Integrated Ship Energy Flowchart (ISEF), aims to create a digital twin of a ship and carry out deterministic calculations, such as engine power requirements and by extension fuel consumption and emissions, by modelling the various components of a ship’s energy flow. Most modeling approaches depend on tracking data from automatic identification systems (AIS) and commercial vessel databases, accompanied with prohibitive costs for many, as well as missing vessel characteristics. ISEF, on the other hand, aims to fill in the gap in case of missing or costly to obtain data while maintaining the flexibility to utilize field data if available. This is done by providing representative vessel characteristics, detailed engine modeling and simulating components such as environmental conditions (sea-state, wind). At the same time, ISEF develops a library of vessel data including ship particulars, engine and route information among others. Thus, it is also suitable for the validation of tracking information and machine learning or other deterministic algorithms. Additionally, this library will enable the development of a statistically representative ship describing the international fleet. This will therefore improve projection algorithms utilized in calculations and aid the evaluation of mitigation options regarding decarbonisation in terms of the overall fleet. Such a model also enables the investigation of alternative fuels and fuel mixtures, route optimization, and inclusion of cold ironing amongst others. The current objectives include the validation of the core modelling implementation via comparisons with available raw data to serve as a reference case and build the necessary libraries. Therefore, a case study of a specific ship utilizing real navigational data will be used to demonstrate the capabilities of the algorithm.

Publisher

SNAME

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3