Thermodynamic Analysis of a Closed-Cycle Ocean Thermal Energy Conversion Power Plant for Offshore Platforms

Author:

Ezgi Cüneyt1

Affiliation:

1. Piri Reis University, Istanbul

Abstract

Abstract The world is currently facing two major challenges: global climate change and sustainable development. Efforts to generate electricity from renewable energy sources continue steadily. In this study, a closed-cycle ocean thermal energy conversion (OTEC) power plant with various working fluids with zero Ozone Depletion Potential (ODP) and per unit mass flow rate for offshore platforms is designed and thermodynamically analyzed using Engineering Equation Solver (EES). The calculated results shows that ammonia (R-717) has the highest electrical performance of 45.51 kW per unit mass flow rate among the studied working fluids for OTEC. Introduction The world is currently confronted with two major challenges: global climate change and sustainable development. The Paris Agreement entered into force on November 4, 2016, limited global warming to well below 2°C, preferably to 1.5°C, compared to preindustrial levels. According to the Sixth Assessment Report released by Intergovernmental Panel on Climate Change (IPCC) on February 28, 2022, climate change is causing common deterioration in every zone in the world with just 1.1°C of warming. Sustainable solutions for our environment’s future must be produced. Therefore, the power generation efforts from renewable energy sources are going on continuously.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3