Hydrodynamic Decomposition-Based Optimization of Ship’s Hull–Propeller System Under Multiple Operating Conditions

Author:

Zakerdoost Hassan1,Ghassemi Hassan1

Affiliation:

1. Amirkabir University of Technology, Tehran

Abstract

_ In this research, a framework for the analysis and design optimization of ship hull–propeller systems (HPSs) in waves is developed. This framework can be utilized as an efficient synthesis tool to determine the main geometric characteristics of the HPSs during the early stage of ship design. The optimization is carried out in two levels and under multipoint operating conditions (OC). Multiobjective evolutionary algorithm based on decomposition (MOEA/D) as an efficient multiobjective evolutionary algorithm, Michell integral and OpenProp tool as low-fidelity hydrodynamic solvers and boundary element method (BEM) as medium-fidelity solver are applied on two case studies to minimize the effective power and maximize the propulsive efficiency of HPSs. To estimate the added wave resistance, an efficient semiempirical formula is also employed. The Series 60 hull form with DTMB P4118 single propeller and S175 hull form with KP505 twin-propeller are considered as the original models. The numerical results show that the framework can find optimized designs with better hydrodynamic performance. Introduction Optimizing the hydrodynamic performance of ships’ hull and propeller(s) based on multiple design condition has gained considerable importance over the last few years. High fuel oil costs are the reason that shipyards and ship owners are now focusing more than ever on the reduction of effective power and propulsive efficiency. Hydrodynamic performance parameters, such as effective power and propulsive efficiency, are determined by the hull form and propeller shape, so it is very important to choose a hull–propeller system (HPS) with good performance in early stage ship design. There exist two main factors in the hydrodynamic design optimization of marine systems. The first factor is simultaneously considering all components of the system influencing objective function(s) and the second one is selecting a less time-consuming solver with satisfactory accuracy. In the ship design process, these two factors must be taken for conducting a reasonable optimization into consideration.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3