Fabrication and Engineering Technology for Lightweight Ship Structures, Part 1: Distortions and Residual Stresses in Panel Fabrication

Author:

Huang T. D.1,Dong Pingsha2,DeCan Larry3,Harwig Dennis4,Kumar Ramesh5

Affiliation:

1. Northrup Grumman Corporation

2. Battelle Memorial Institute

3. University of New Orleans

4. Edison Welding Institute

5. Dimensional Control Systems, Inc.

Abstract

An increase in shipboard applications of lightweight structures has been evident over the recent years in both military and commercial vessels. Ship panel distortions generated through various stages of production (e.g., material handling, blast and paint, panel fabrication, subassembly, assembly, outfitting, and erection) have emerged as a major obstacle to the cost-effective fabrication of these lightweight structures. This problem is particularly challenging for naval ships that are built with relatively thin plate and require fair surfaces to maximize hydrodynamic performance and minimize radar signature. With a recent major initiative funded by the U.S. Navy, a comprehensive assessment of the lightweight panel fabrication technology has been undertaken. This assessment took into account the residual stresses of thin plate conditions during the material handling, cutting, fitting, and welding processes. A series of test panels with varying degrees of complexity representing the typical shipboard applications were designed and used to quantify dimensional variations through the entire fabrication processes in a production environment. A light detection and ranging (LIDAR) measurement system was used to analyze panel distortion topography resulting from different processes. Welding attributes, stiffener assembly sequence, and material handling methods were systematically monitored and evaluated to identify areas for fabrication improvement. Advanced computational tools were further developed and used to establish the underlying distortion mechanisms and critical process parameters in these panel structures. Some of the major findings include the following:local buckling is the dominant distortion mechanisms in lightweight panel structures;special care must be exercised in material handling of lightweight structures in preventing long-range permanent deformation;dimensional accuracy from thermal cutting can have a significant impact on buckling distortions, particularly for different thickness combinations in complex panels;any effective mitigation techniques for minimizing buckling distortion should either reduce the buckling driving force (fabrication induced stresses) and/or increase the buckling resistance (e.g., panel geometric parameters and assembly procedures);butt welding of plates to make panels requires a low heat input narrow groove process to minimize distortion prior to fillet welding of stiffeners;precision fillet welding process with automatic seam tracking offers the potential to minimize overwelding.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3