Empirical Model of Uniflow Scavenging for Ultra-Long-Two-Stroke Marine Diesel Engines

Author:

Wang Yingyuan1,Gu Jie1,Yang Mingyang1,Deng Kangyao1,Cui Lei2,Qian Yuehua2

Affiliation:

1. Shanghai Jiaotong University, Shanghai

2. China Shipbuilding Power Engineering Institute Co., Ltd.

Abstract

_ Low-speed two-stroke diesel engines are widely employed in the marine industry, especially in tanks, owing to their advantages of fuel economy and reliability. However, with the emerging ultra-long-stroke trend, existing scavenging models, which are based on the configuration of cylinders with short strokes, are no longer applicable. In this study, we investigate the flow field and residual exhaust gas distribution in a cylinder using particle image velocimetry and computational fluid dynamics (CFD) simulations. The result shows a strong Burgers vortex structure upstream of the scavenger flow and dissipates gradually as it moves downstream. Furthermore, the scavenging process comprises three processes according to the detailed CFD analysis: displacement, mixing scavenging, and short circuit. Inspired by the results, a tailored empirical model of ultra-long-stroke uniflow scavenging comprising three sub-models is proposed. Specifically, a logarithmic relationship between the concentration level and scavenging deliver ratio is proposed to describe the mixing scavenging process. Finally, the model was validated against CFD results. The results demonstrate that the discrepancy in the scavenging efficiency curve predicted by this model and CFD is less than 1%, thereby demonstrating model reliability. Introduction Owing to the advantages of a large power range, high thermal efficiency, low fuel consumption rate, and good reliability, marine low-speed engines are widely used to provide power to civil ships (Heywood 1999). The market for low-speed engines is vast and is improving the performance of low-speed engines through research has great economic and environmental significance (Woodyard 2004). To meet the requirements of ship owners for lower fuel consumption and the IMO’s regulation of halving the greenhouse gas emissions of newly built ships, the ultra-long stroke of low-speed engines has become a trend (Lamas & Vidal 2012). With an ultralong stroke, the combustion speed of low-quality fuel oil is slow, and an ultra-long-stroke cylinder can prolong the expansion process, improve the combustion process, and reduce the fuel consumption rate (Fenghua 2014). The ultra-long-stroke diesel engine further creates fuel savings of 3.5–7% based on the original low fuel consumption. Previously, ultra-long strokes could not be achieved, limited by materials and manufacturing processes. However, in recent years, with the advancement of materials and processes, ultra-long strokes have been widely adopted as they have demonstrated superior competitiveness.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3