Abstract
A two-dimensional, rigid, rectangular, open tank without baffles is forced to oscillate harmonically with small amplitudes of sway or roll oscillation in the vicinity of the lowest natural frequency for the fluid inside the tank. The breadth of the tank is 0(1) and the depth of the fluid is either 0(1) or in-finite. The excitation is 0(ε) and the response is 0(ε1/3). A nonlinear, inviscid boundary-value problem of potential flow is formulated and the steady-state solution is found as a power series in ε1/3 correctly to 0(ε). Comparison between theory and experiment shows reasonable agreement. The stability of the steady-state solution has been studied.
Publisher
The Society of Naval Architects and Marine Engineers
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献