Optimization of Process Parameters and Mechanical Properties of 316L Stainless Steel Block via Arc Additive Manufacturing

Author:

Zhao DongSheng1,Long DaiFa1,Liu YuJun1

Affiliation:

1. Dalian University of Technology, Dalian

Abstract

_ A study was conducted on the influence of current, spacing, current mode, and arc length on the formation of adjacent weld overlays in the 316L stainless steel block melting process using an extremely inert gas-shielded arc additive manufacturing method. The main defect observed during the formation of adjacent weld overlays was the incomplete fusion at the bottom. When using direct current, low current and short arc length could ensure the flatness of the overlay surface, and the fusion at the bottom of the adjacent weld overlays was improved, but the problem of incomplete fusion remained unresolved. When using pulse current, low current, short arc length, and continuous welding method could solve the problem of bottom fusion of adjacent weld overlays. Due to the thermal influence during the accumulation of adjacent weld overlays, the microstructure inside the weld overlay was uneven, and the crystallographic texture in the entire weld overlay was not formed. With a pulse current of 80 A, adjacent weld overlay spacing of 4.5 mm, travel speed of 200 mm/min, dry elongation of 10 mm, and arc length of 2 mm, the tensile strengths of the block in the X, Y, and Z directions were 568.5, 570.3, and 550.7 MPa, respectively, and the fracture elongations were 46%, 48%, and 43.3%, respectively. The strength and plasticity in the Z-direction were lower than those in the X and Y directions. Introduction The 316L stainless steel had excellent mechanical properties, corrosion resistance, and low-temperature performance (Tan et al. 2019; Larimian et al. 2022). It was commonly used in the manufacturing of marine equipment, such as offshore oil platforms or large ships, and had a wide range of applications in industries, such as automotive and aerospace (Zhang et al. 2021b; Zhao et al. 2021a, 2022b). Compared with laser additive manufacturing, arc additive manufacturing had the advantages of low cost and high efficiency, although its forming accuracy was low (Casati et al. 2016; Zhang et al. 2021a; Zhao et al. 2022a). It was suitable for the customized manufacturing and maintenance of large structures.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3