Computational Fluid Dynamics–Based Optimization of a Surface Combatant

Author:

Tahara Y.1,Stern F.2,Himeno Y.1

Affiliation:

1. Osaka Prefecture University

2. University of Iowa

Abstract

Computational fluid dynamics (CFD)-based optimization of a surface combatant is presented with the following main objectives:development of a high-performance optimization module for a Reynolds averaged Navier-Stokes (RANS) solver for with-free-surface condition; anddemonstration of the capability of the optimization method for flow- and wave-field optimization of the Model 5415 hull form. The optimization module is based on extension of successive quadratic programming (SQP) for higher-performance optimization method by introduction of parallel computing architecture, that is, message passing interface (MPI) protocol. It is shown that the present parallel SQP module is nearly m(= 2k+ 1; k is number of design parameters) times faster than conventional SQP, and the computational speed does not depend on the number of design parameters. The RANS solver is CFDSHIP-IOWA, a general-purpose parallel multiblock RANS code based on higher-order upwind finite difference and a projection method for velocity-pressure coupling; it offers the capability of free-surface flow calculation. The focus of the present study is on code development and demonstration of capability, which justifies use of a relatively simple turbulence model, a free-surface model without breaking model, static sinkage and trim, and simplified design constraints and geometry modeling. An overview is given of the high-performance optimization method and CFDSHIP-IOWA, and results are presented for stern optimization for minimization of transom wave field disturbance; sonar dome optimization for minimization of sonar-dome vortices; and bow optimization for minimization of bow wave. In conclusion, the present work has successfully demonstrated the capability of the CFD-based optimization method for flow- and wave-field optimization of the Model 5415 hull form. The present method is very promising and warrants further investigations for computer-aided design (CAD)-based hull form modification methods and more appropriate design constraints.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3