Analysis of Variational Autoencoders for Imputing Missing Values from Sensor Data of Marine Systems

Author:

Velasco-Gallego Christian1,Lazakis Iraklis1

Affiliation:

1. University of Strathclyde, Glasgow

Abstract

Of all the causes of accidents to ships, 14% pertains to damage due to ship equipment. Accordingly, the maritime industry is currently considering state-of-the-art maintenance and inspection processes, an example of which is condition-based maintenance (CBM). This is a strategy that hinges on the condition monitoring (CM) of assets. CM has proven to increase efficiency, reliability, profitability, and performance of vessel. To enable this maintenance strategy, sensors need to be installed along the most critical ship components and around the environment where these assets are operating through the application of Internet of Ships (IoS). IoS has demonstrated to be effective for collecting data in real time as well as performing diagnosis and prognosis to assess the current and future health of machinery to assist instant decision-making. The employment of IoS presents several challenges, an example of which is the imputation of missing values. Data imputation is a compelling preprocessing step, the aim of this is to estimate identified missing values to avoid underutilization of data. This data preparation step has gained popularity over the last few years due to its importance when dealing with Industrial Internet of Things (IIoT) sensor data. Although some articles presented new methodologies to impute missing values from sensor data of marine machinery based on machine learning methodologies, deep learning models have not yet been considered. For this reason, variational autoencoders for imputing missing values from sensor data of marine systems are analyzed in this article. To assess the performance of variational autoencoders as imputation methods, a comparative study is performed with widely implemented imputation techniques. Mean imputation, Forward Fill and Backward Fill, and k-Nearest Neighbors are considered. To that end, a case study on marine machinery system parameters obtained from sensors installed on a diesel generator of a tanker ship is performed. Results demonstrate the applicability of variational autoencoders when dealing with missing values of marine machinery systems sensor data, achieving a coefficient of determination of 0.99 when imputing missing values of the diesel generator power parameter.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3